Contents

Contributor contact details		xiii	
Introdu	action	xix	
Part i	The hydrogen embrittlement problem	1	
1	Hydrogen production and containment G. B. Rawls and T. Adams, Savannah River National Laboratory, USA and N. L. Newhouse, Lincoln Composites, Inc., USA	3	
1.1	Introduction	3	
1.2	American Society of Mechanical Engineers (ASME)		
	stationary vessels in hydrogen service	4	
1.3	Department of Transportation (DOT) steel transport		
	vessels	6	
1.4	Fracture mechanics method for steel hydrogen vessel		
	design	12	
1.5	American Society of Mechanical Engineers (ASME)		
	stationary composite vessels	15	
1.6	Composite transport vessels	26	
1.7	Hydrogen pipelines	27	
1.8	Gaseous hydrogen leakage	32	
1.9	Joint design and selection	44	
1.10	American Society of Mechanical Engineers (ASME) code		
	leak and pressure testing	45	
1.11	References	48	
2	Hydrogen-induced disbonding and embrittlement of steels used in petrochemical refining S. Pillot and L. Coudreuse, ArcelorMittal, France	51	
2.1	Introduction	51	
2.2	Petrochemical refining	52	

vi	Contents	
2.3 2.4 2.5	Problems during/after cooling of reactors Effect of hydrogen content on mechanical properties Conclusion	72 81
2.6	References	90 91
3	Assessing hydrogen embrittlement in automotive hydrogen tanks T. Michler, M. Lindner, U. Eberle and J. Meusinger, Adam Opel AG, Germany	94
3.1	Introduction	94
3.2	Experimental details	98
3.3	Results and discussion	99
3.4	Conclusions and future trends	118
3.5	References	119
4	Gaseous hydrogen issues in nuclear waste disposal F. King, Integrity Corrosion Consulting Ltd, Canada	126
4.1	Introduction	126
4.2 4.3	Nature of nuclear wastes and their disposal environments Gaseous hydrogen issues in the disposal of high activity	128
	wastes	134
4.4	Gaseous hydrogen issues in the disposal of low and intermediate level waste (LILW)	141
4.5	Conclusions	145
4.6	References	145
5	Hydrogen embrittlement in nuclear power systems G. A. Young, Jr, E. Richey and D. S. Morton, Bechtel Marine Propulsion Corporation, USA	149
5.1	Introduction	149
5.2	Experimental methods	157
5.3	Environmental factors	160
5.4	Metallurgical effects	166
5.5	Conclusions	171
5.6	Acknowledgements	171
5.7	References	172
6	Standards and codes to control hydrogen-induced cracking in pressure vessels and pipes for hydrogen	
	gas storage and transport J. R. Sims, Becht Engineering Company, Inc., USA	177
6.1	Introduction	177

	Contents	vii
6.2	Basic code selected for pressure vessels	178
6.3	Code for piping and pipelines	179
6.4	Additional code requirements for high pressure hydrogen	
	applications	180
6.5	Methods for calculating the design cyclic (fatigue) life	181
6.6	Example of crack growth in a high pressure hydrogen	
	environment	187
6.7	Summary and conclusions	191
6.8	References	192
Part II	Characterisation and analysis of hydrogen	
	embrittlement	193
7	Fracture and fatigue test methods in hydrogen gas	195
	K. A. Nibur, Hy-Performance Materials Testing, USA and	
	B. P. Somerday, Sandia National Laboratories, USA	
7.1	Introduction	195
7.2	General considerations for conducting tests in external	
	hydrogen	197
7.3	Test methods	208
7.4	Conclusions	229
7.5	Acknowledgements	230
7.6	References	230
0	Manharina of mandage took seeklands and	
8	Mechanics of modern test methods and	
	quantitative-accelerated testing for hydrogen	237
	embrittlement W. Dietzell, Helmholtz-Zentrum Geesthacht, Germany, A. Atrens,	237
	The University of Queensland, Australia and A. Barnoush,	
	Universität des Saarlandes, Germany	
8.1	Introduction	237
8.2	General aspects of hydrogen embrittlement (HE) testing	238
8.3	Smooth specimens	239
8.4	Pre-cracked specimens – the fracture mechanics (FM)	
	approach to stress corrosion cracking (SCC)	244
8.5	Limitations of the linear elastic fracture mechanics (FM)	
	approach	254
8.6	Future trends	258
8.7	Conclusions	267
8.8	References	268

VIII	Contents

9	Metallographic and fractographic techniques for characterising and understanding hydrogen-assisted cracking of metals S. P. LYNCH, Defence Science and Technology Organisation, Australia	274
9.1	Introduction	274
9.2	Characterisation of microstructures and hydrogen distributions	275
9.3	Crack paths with respect to microstructure	277
9.4	Characterising fracture-surface appearance (and interpretation of features)	280
9.5	Determining fracture-surface crystallography	298
9.6	Characterising slip-distributions and strains around cracks	301
9.7	Determining the effects of solute hydrogen on dislocation	
0.0	activity	307
9.8	Determining the effects of adsorbed hydrogen on surfaces	311
9.9	In situ transmission electron microscopy (TEM) observations of fracture in thin foils and other TEM	
	studies	314
9.10	'Critical' experiments for determining mechanisms of	
	hydrogen-assisted cracking (HAC)	316
9.11	Proposed mechanisms of hydrogen-assisted cracking (HAC)	329
9.12	Conclusions	338
9.13	Acknowledgements	339
9.14	References	339
10	Fatigue crack initiation and fatigue life of metals exposed to hydrogen N. E. Nanninga, formerly with National Institute of Standards and Technology, USA, currently with TIMET, Henderson Technical Laboratory, USA	347
10.1	•	
10.1	Introduction	347
10.2	Effect of hydrogen on total-life fatigue testing and fatigue	2 - 2
10.2	crack growth (FCG) threshold stress intensity range	350
10.3	Mechanisms of fatigue crack initiation (FCI)	363
10.4	Conclusions	370
10.5 10.6	Future trends in total-life design of structural components References	371 372

Contents	ix

11	Effects of hydrogen on fatigue-crack propagation in steels Y. Murakami, International Institute for Carbon-Neutral Research (I ² CNER), Kyushu University, Japan and National Institute of Advanced Industrial Science and Technology (AIST), Japan and R. O. Ritchie, University of California, Berkeley, USA and Lawrence Berkeley National Laboratory, USA	379
11.1	Introduction	379
11.2	Materials and experimental methods	380
11.3	Effect of hydrogen on the fatigue behavior of martensitic SCM435 Cr-Mo steel	383
11.4	Effect of hydrogen on fatigue-crack growth behavior in austenitic stainless steels	390
11.5	Effects of hydrogen on fatigue behavior in lower-strength bainitic/ferritic/martensitic steels	403
11.6	Summary and conclusions	411
11.7	Acknowledgement	413
11.8	References	413
11.9	Appendix	417
Part II	I The hydrogen embrittlement of alloy classes	419
12	Hydrogen embrittlement of high strength steels W. M. Garrison Jr, Carnegie Mellon University, USA and N. R. Moody, Sandia National Laboratories, USA	421
12.1	Introduction	421
12.2	Microstructures of martensitic high strength steels	423
12.3	Effects of hydrogen on crack growth	428
12.4	Discussion of microstructural effects	465
12.5	Conclusions	482
12.6	References	484
13	Hydrogen trapping phenomena in martensitic steels	493
	F. G. Wei, Nippon Yakin Kogyo Co., Ltd, Japan and K. Tsuzaki, National Institute for Materials Science, Japan	480
13.1	Introduction	493
13.2	Hydrogen in the normal lattice of pure iron	494
13.3	Theoretical treatments for diffusion in a lattice containing trap sites	496
13.4	Experimental and simulation techniques for measurement of trapping parameters	500
13.5	Hydrogen trapping at lattice defects in martensitic steels	506

~	Contents	•

13.6	Design of nano-sized alloy carbides as beneficial trap sites to enhance resistance to hydrogen embrittlement	521
13.7	Conclusions	522
13.8	References	523
14	Hydrogen embrittlement of carbon steels and their welds K. Xu, Praxair, USA	526
14.1	Introduction	526
14.2	Hydrogen solubility and diffusivity in carbon steels	528
14.3	Mechanical properties of carbon steels and their welds in	
	high pressure hydrogen	529
14.4	Important factors in hydrogen gas embrittlement	543
14.5	Hydrogen embrittlement mechanisms in low strength	•
1 1127	carbon steels	555
14.6	Future research needs	555
14.7	Conclusions	557
14.8	Sources of further information and advice	558
14.9	References	558
1 1.2	Nototolices	550
15	Hydrogen embrittlement of high strength, low alloy (HSLA) steels and their welds L. Duprez, E. Leunis, Ö. E. Güngör, and S. Claessens, ArcelorMittal Research Industry, Belgium	562
15.1	Introduction	562
15.2	The family of high strength, low alloy (HSLA) steels	564
15.3	The welding of high strength, low alloy (HSLA) steels	567
15.4	Mechanical effect of hydrogen on high strength, low alloy	
	(HSLA) steels	569
15.5	Conclusions	590
15.6	References	590
16	Hydrogen embrittlement of austenitic stainless steels and their welds	592
	C. SAN MARCHI, Sandia National Laboratories, USA	
16.1	Introduction	592
16.2	Fundamentals of austenitic stainless steels	593
16.3	Hydrogen transport	597
16.4	Environment test methods	599
16.5	Models and mechanisms	601
16.6	Observations of hydrogen-assisted fracture	603
16.7	Trends in hydrogen-assisted fracture	608
16.8	Conclusions and future trends	613

	Con	itents	xi
16.9 16.10	Acknowledgments References		614 614
17	Hydrogen embrittlement of nickel, cobalt and iron-based superalloys J. A. Lee, National Aeronautics and Space Administration (NASA), USA		624
17.1	Introduction		624
17.2 17.3	Hydrogen transport properties in superalloys Hydrogen gas effects on mechanical properties of		628
	superalloys		632
17.4	Important factors in hydrogen embrittlement		647
17.5	Future trends		660
17.6 17.7	Conclusions Sources of further information and advice		662
17.7	References		662 663
18	Hydrogen effects in titanium alloys D. ELIEZER, Ben Gurion University of the Negev, Israel and Th. BÖLLINGHAUS, Federal Institute for Materials Research and Testing (BAM), Germany	d	668
18.1	Introduction		668
18.2	Terminology, classification and properties of titanium	n	
	alloys		669
18.3	Hydrogen embrittlement behavior in different classes	s of	
10.4	titanium alloys		673
18.4 18.5	Hydrogen trapping in titanium alloys		678
18.6	Positive effects in titanium alloys Summary and conclusions		692 700
18.7	References		700 701
19	Hydrogen embrittlement of aluminum and aluminum-based alloys J. R. Scully, University of Virginia, USA, G. A. Young Jr., I Atomic Power Lab, USA and S. W. Smith, NASA Langley Research Center, USA	Knolls	707
19.1	Introduction: scope and objective		708
19.2	Hydrogen interactions in Al alloy systems (experime	ent	
	and modeling)		708
19.3	Gaseous hydrogen and hydrogen environment		
	embrittlement (HEE) in Al-based alloys		740
19.4	Mechanisms of hydrogen-assisted cracking in Al-bas systems	sed	751

vii	Contents
XII	Contents

19.5	Improvement of the hydrogen resistant Al-base alloys based on metallurgical, surface engineering or	
	environmental chemistry modifications	754
19.6	Needs, gaps and opportunities in Al-based systems	757
19.7	Future trends	757
19.8	Sources of further information and advice	759
19.9	References	759
20	Hydrogen-induced degradation of rubber seals J. Yamabe and S. Nishimura, Kyushu University, Japan and National Institute of Advanced Industrial Science and Technology (AIST), Japan	769
20.1	Introduction	769
20.2	Example of cracking of a rubber O-ring used in a high	
	pressure hydrogen storage vessel	7 7 1
20.3	Effect of filler on blister damage to rubber sealing	
	materials in high pressure hydrogen gas	774
20.4	Influence of gaseous hydrogen on the degradation of a	
	rubber sealing material	797
20.5	Testing of the durability of a rubber O-ring by using a	
	high pressure hydrogen durability tester	801
20.6	Additional work required and future plans	811
20.7	Conclusions	811
20.8	Acknowledgement	813
20.9	References	813
	Index	817